更多>>精华博文推荐
更多>>人气最旺专家

麻圣

领域:新浪网

介绍:专家表明,排名时采用的数据来源于公开信息,包括在世界卫生组织(WHO)以及全球信息库中搜集到的欧洲国家饮酒数据。...

刘辽辽

领域:新浪中医

介绍:胎生比卵生提高了后代的出生存活率。lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址

凯时娱乐共人生就怎样才能赢
本站新公告lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址
rxe | 2019-01-18 | 阅读(454) | 评论(862)
一、教学理念的更新是重点。【阅读全文】
lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址
1fv | 2019-01-18 | 阅读(369) | 评论(532)
随着RFID技术在图书馆中的应用,逐渐进入到实践阶段,RFID电子标签将逐渐取代纸质条码。【阅读全文】
v9p | 2019-01-18 | 阅读(980) | 评论(714)
主编有《远东英汉大辞典》。【阅读全文】
9oe | 2019-01-18 | 阅读(118) | 评论(841)
林彪115师歼灭日军1000多人林彪概况二.抗日根据地的建立与发展1.建立抗日根据地《抗日根据地示意图》全面抗战爆发后,八路军和新四军挺进敌后,先后建立晋察冀、晋绥、晋冀豫、山东、苏南、陕甘宁等抗日根据地。【阅读全文】
g0m | 2019-01-18 | 阅读(709) | 评论(83)
其中无论是出于作者的“无私奉献”的知识共享型,希望得到网友反馈型,还是增加自我认同感,增加自己名气等原因,都默许自己的文档被其他人上传至我网。【阅读全文】
vm0 | 2019-01-17 | 阅读(875) | 评论(730)
例如教学繁忙阶段可能会出现暂时放下党建工作的情况。【阅读全文】
ykq | 2019-01-17 | 阅读(180) | 评论(974)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
xj9 | 2019-01-17 | 阅读(376) | 评论(781)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址,lc8.com乐橙国际最新登录地址
zlr | 2019-01-17 | 阅读(139) | 评论(991)
二、防损治理工作的权利和义务前面说了,防损员的责任十分重要,防损员的每一项工作任务,都是为了司的利益而往执行的,防损员是代表上级从事检查和督促工作的,从某种意义上说,防损员就是团体最高领导人实际治理操纵过程中行使的一种权利,(用土话说就是一种工具),也是防损员所必须应尽的义务。【阅读全文】
wso | 2019-01-16 | 阅读(378) | 评论(824)
按照不同的标准,泡沫混凝土大致可分为以下几种类型(如表所示):表泡沫混凝土的分类分类标准泡沫混凝土种类水泥泡沫混凝土、菱镁泡沫混凝土、石膏泡沫混凝土和火组成中胶结材料山灰质泡沫混凝土所用主要填充料的种类粉煤灰泡沫混凝土、矿粉泡沫混凝土、秸秆泡沫混凝土等干表观密度B03、B04、B05、B06、B07、B08、B09、B10八个等级保温型泡沫混凝土、保温结构型泡沫混凝土和结构型泡沫使用功能混凝土【阅读全文】
8uf | 2019-01-16 | 阅读(236) | 评论(482)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
8zf | 2019-01-16 | 阅读(148) | 评论(769)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
zqb | 2019-01-16 | 阅读(371) | 评论(943)
近地面气温低则气压高,气温高则气压低。【阅读全文】
9rc | 2019-01-15 | 阅读(151) | 评论(144)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
k7u | 2019-01-15 | 阅读(600) | 评论(287)
手工业:指依靠手工劳动,使用简单工具的小规模工业生产。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-18

利来国际w66平台 w66利来国际 www.w66.com 利来国际w66最新 利来国际手机客户端
国际利来旗舰厅 利来国际w66手机网页 利来国际最老牌手机板 利来国际娱乐官方网站 利来国际w66利来国际w66
w66利来国际 www.w66.com 利来 利来国际w66.com 利来娱乐在线平台 利来娱乐备用
w66历来国际 利来电游 利来电游 利来国际老牌w66 利来国际娱乐官方网站
镇康县| 龙游县| 长治县| 淮滨县| 如皋市| 清流县| 松桃| 东港市| 湘西| 那曲县| 儋州市| 宿迁市| 县级市| 连州市| 青铜峡市| 徐州市| 南昌县| 义马市| 盈江县| 郴州市| 郴州市| 邢台市| 姚安县| 万盛区| 白沙| 高安市| 休宁县| 会理县| 南宫市| 舟曲县| 资讯| 华亭县| 永年县| 乌苏市| 孝昌县| 阳江市| 义乌市| 张家口市| 达拉特旗| 黄龙县| 扎囊县| http://m.36310162.cn http://m.43146990.cn http://m.54933044.cn http://m.36783366.cn http://m.10420362.cn http://m.57020408.cn